Analytical functions for the calculation of hyperspherical potential curves of atomic systems

J.J. De Groote, Mauro Masili¹ and J.E. Hornos²

Instituto de Química de Araraquara, Universidade Estadual Paulista
Caixa Postal 355, 14801-970 Araraquara, SP, Brazil
Tel 55-16-2016600 R. 6755, Fax 55-16-2227932
E-mail: jean@iq.unesp.br

¹Department of Physics and Astronomy,
The University of Nebraska, 116 Brace Laboratory,
Lincoln, Nebraska 68588-0111, USA
²Instituto de Física de São Carlos,
Universidade de São Paulo
Caixa Postal 369, 13560-970 São Carlos, SP, Brazil

The Hyperspherical Adiabatic Approach (HAA) [1, 2, 3] is an adequate method to treat N-body systems interacting with the long-range Coulombian forces due to its molecular-like description using potential curves that bring us to mind the spirit of the Born-Oppenheimer approximation. For two electron atomic systems (N=3) the HS coordinates are, $R^2 = r_1^2 + r_2^2$, $\tan \alpha = r_1/r_2$. With those coordinates the hyperspherical Schrödinger equation has the compact form

$$\left[\frac{d^2}{dR^2} - \frac{\hat{U}(R;\Omega) - 1/4}{R^2} + \varepsilon\right] \left(\sin\alpha\cos\alpha R^{5/2}\psi(R,\Omega)\right) = 0,\tag{1}$$

where ε is the system energy and the operator $\hat{U}(R;\Omega)$ depends on all compact variables $\Omega = (\alpha, \phi_i, \theta_i; i = 1, 2)$ and on the hyper-radius R through the expression

$$\hat{U} = C_2 (O(3N - 3)) + R\hat{V}(R; \Omega), \tag{2}$$

where C_2 is the Casimir operator of the O(3N-3) group and \hat{V} is the interparticle potential energy. The eigenstates of \hat{U} are the channel functions, $\Phi_{\lambda}(R;\Omega)$ with eigenvalues forming potential curves $U_{\lambda}(R)$ as function of R. In the Hyperspherical Adiabatic Approach (HAA) the total wave function is expanded in the basis formed by the channel functions,

$$\psi(R,\Omega) = \sum_{\lambda} F_{\lambda}(R) \Phi_{\lambda}(R;\Omega), \tag{3}$$

which leads to a set of coupled equations for the radial components $F_{\lambda}(R)$.

By introducing the variable $z = \tan(\alpha/2)$ [2, 4] we present a fast convergent analytical angular basis functions to expand $\Phi_{\lambda}(R;\Omega)$ which generalizes the Jacobi polynomials. We show that these functions, obtained by selecting the diagonal terms of the angular equation with respect to the total angular momentum function $\mathcal{Y}_{\ell_1\ell_2}^{LM}(\hat{r}_1,\hat{r}_2)$, allow efficient diagonalization of the Hamiltonian for all values of the hyperspherical radius [5].

For the Li^+ ion and helium atom with L=0 and total spin S=0 the ground state energy obtained as a function of the number of radial coupled components are given on table I.

Table 1: Ground state energy of the Li^+ as a function of the number of coupled radial equations.

$\overline{N_c}$	Li ⁺ Energy (a.u.)	Error (ppm)	He Energy (a.u.)	Error
1	-7.26264006	2372.737	-2.89555356	2813.911
3	-7.27970490	28.639	-2.90361147	38.882
7	-7.27989774	2.149	-2.90371707	2.515
13	-7.27990925	0.568	-2.90372300	0.475
21	-7.27991083	0.351		

The method also allows the calculation of excited states when the correct radial assymptotic condition is considered [6]. Some results are shown on Table II.

Table 2: Lowest binding energies of the Li^+ [5] and Helium [7]

State	Li ⁺ Energy (a.u.)	Error (ppm)	He Energy (a.u.)	Error (ppm)
1s1s	-7.2799108	0.35	-2.90372300	0.48
1s2s	-5.0408659	2.15	-2.14595696	7.96
1s3s	-4.7337250	6.44	-2.06124287	14.13
1s4s	-4.6297491	7.15	-2.03356778	9.31
1s5s	-4.5824015	5.64	-2.02116476	5.98

Acknowledgments.

This work was supported by the agencies CNPq and FAPESP (proc. 98/03044-7 and 97/06271-1).

- [1] J. H. Macek, J. Phys. B 1, 831 (1968).
- [2] J. E. Hornos, S. W. MacDowell, and C. D. Caldwell, Phys. Rev. A 33, 2212 (1986).
- [3] C. D. Lin, Phys. Rep. **257**, 1-83 (1995).
- [4] M. Masili, J. J. De Groote, and J. E. Hornos, Phys. Rev. A 52, 3362 (1995).
- [5] J. J. De Groote, M. Masili and J. E. Hornos, submitted to Phys. Rev. A.
- [6] J. J. De Groote, M. Masili and J. E. Hornos, J. Phys. B 31, 4755 (1998).
- [7] M. Masili, J. J. De Groote and J. E. Hornos, submitted to J. Phys. B.